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T, L. Jackson*, A. K. Kapila' and D, S. Stewart** 

Experimental observations of ignition in premixed gaseous 
reactants indicate that perfectly homogeneous initiation is 
practically unrealizable. Instead, combustion first sets in, as a 
rule, at small, discrete sites where inherent inhomogeneities cause 
chemical activity to proceed preferentially and lead to localizd 
explosions. Combustion waves propagating away from these "hot 
spots" or "reaction centers." eventually envelope the remaining 
bulk. 

of a hot spot for a model involving Arrhenius kinetics. The hot 
spot, characterized by peaks in pressure and temperature with 
little diminution in local density, is shown to have one of two 
possible self-similar structures. The analysis employs a 
combination of asymptotics and numerics, and terminates when 
pressure and temperature in the explosion have peaked. 

This study examines the spatial structure and temporal evolution 
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1 Introduction 

This paper descibes mathematically the birth and growth of a hot 

spot, or localized thermal explosion, in a premixed reactive gas. 

Experimental observations on the initiation of combustion in 

gases at high temperatures, in shock tubes and elsewhere, have 

demonstrated conclusively that spatially homogeneous combustion is 

essentially an unattainable ideal. In fact, ignition first sets in 

locally, in small volume elements at discrete sites, where chemical 

reaction proceeds preferentially due to inherent imperfections in 

the system. In due course, combustion waves originating from 

localized explosions occuring at these "hot spots!', "reaction 

centers" or "exothermic centers" envelope the entire reacting mass. 

The role played by these sites as precursors of more dramatic 

combustion phenomena is revealed with unsurpassed clarity in Urtiew 

and Oppenheim's C 1 3  photographic records of deflagration-to- 

detonation transition in a Hydrogen-Oxygen mixture confined to a 

tube. These photographs show that as the deflagration travels down 

the tube, it accelerates and evolves into a highly folded turbulent 

flame, preceded by a so-called precursor shock. Eventually, an 

exothermic center is formed in the vicinity of the flame, near the 

tube wall. The localized explosion in this center creates a blast 

wave which propagates through the preconditioned mixture behind the 

precursor shock and ultimately evolves into a fully-developed 

detonation. The same feature appears in other modes of detonation- 

initiation, as well as in other geometric configurations. 

The early analyses of reaction-center dynamics are due to Zajac 

and Oppenheim E 2 3  and Meyer and Oppenheim C31. In these studies 
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the react ion center i s  assumed t o  be a spa t ia l l y  homogeneous source 

of chemical energy, capable of expansion and separated from i t s  

i n e r t  surroundings by an impermeable bar r ie r ,  across which only 

momentum transfer can occur. E i ther  by prescr ib ing a spec i f i c  

react ion scheme ,  or by specifying an energy release p r o f i l e  w i t h i n  

the center, the above authors w e r e  able t o  compute the  resu l t ing  

pressure pulse. 

I n  t h i s  paper the react ion center i s  t reated a% par t  and 

parcel of the react ing medium rather  than an iso la ted  e n t i t y  i n  an 

i n e r t  atmosphere, and i s  found t o  have a d e f i n i t e  spat ia l  

structure. The aim of t h i s  paper i s  t o  describe t h i s  s t ructure and 

to study i t 5  temporal evolut ion i n  a plane, one-dimansional 

framework, under the asssumption tha t  the react ive gas undergoes a 

single, one-step, f i rs t -order ,  i r reve rs ib le  chemical react ion of 

the  firrhenius type. One may argue tha t  the simple overa l l  kinmtic 

scheme adopted here is too ideal ized t o  be r e a l i s t i c .  However, f o r  

la rge  act ivat ion energies, the k ine t i cs  does capture an essential 

a t t r i b u t e  of most combustion systems, namely, a react ion r a t e  which 

accelerates rap id ly  w i th  increase i n  temperature. Thus the  model 

i s  qu i te  appropriate f o r  studying problems, such as the  one a t  

hand, which owe t h e i r  genesis t o  the in te rac t ion  between 

gasdynamics and chemical heat release a t  h igh ly  temperature- 

sens i t i ve  rates. 

The configuration of the  system i s  so prescribed as t o  provoke 

the development of a singlr ,  hot s p o t ,  and th is can be accomplished 

i n  a var ie ty  of ways. For example, the  shock-induced thermal- 

runaway studies of  Clarke and Cant C43 and Jackson and Kapi la [SI 
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considered a semi-infinite expanse of gas ignited by a piston- 

driven shock, thereby creating a hot spot at the piston face. 

Instead, the present work assumes that the gas is confined between 

t w o  parallel planes, and that its initial state possesses a slight 

spatial nonuniformity. (In a practical situation these non- 

uniformities may be caused by a variety of factors, such as 

turbulence, interacting pressure waves, or,  in the case of 

condensed explosives, material imperfections. ) The mathematical 

model leads to an initial-boundary value problem for the equations 

of reactive qasdynamics. An asymptotic solution is developed in 

the limit of large activation energy, and the analysis is carried 

as far as the end of the localized explosion within the center. 

The subsequent expansion of the center, and the eventual generation 

of a blast wave, will be the subject of a future publication. 

The temporal evolution of the explosion occurs in two stages, 

beginning with the induction stage. Here the state of the, gas is a 

small perturbation of the initial state and the underlying physical 

processes are! those of linearized acoustics coupled to a weak but 

nonlinear chemical reaction. The reduced equations require a 

numerical solution (see E41 and C 5 3 )  which exhibits local thermal 

runaway. Induction is followed by the explosion stage, which 

consists of several distinct spatial zones. There is the 

practically frozen outer zonm, and a rapidly shrinking inn- zono 

or layor in which intense chemical activity leads to an explosive 

growth of temperature and pressure. Nonlinear chemistry is again 

coupled to linearized qasdynamics, but now the linearization is 

about an atmosphere undergoing a spatially homogeneous thermal 
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explosion. A s  the layer shrinks, it recedes away from the outer 

zone, thereby creating an intormodirto zono which is frozen in 

time. Although highly nonlinear, the explosion stage is amenable 

to anal ysi s because gasdynami cs i s of secondary importance; 

temporal variations are much too rapid for the gas to undergo 

significant expansion. 

For the specific reaction scheme under consideration it is found 

that the reaction center can have one of two posible spatial 

structures, depending upon whether the temperature prdile within 

the hot spot has a sharp peak or a rounded peak (Figure 1) .  The 

former typifies hot spots originating at boundaries (e.g., a piston 

face), and t h e  latter those occuring in the interior of the vessel. 

These structures, which will be referred to as the "Typo Bn 

(boundary-type) or "Typo I "  (internal type), are both self-similar. 

The former is described below in detail, with only the results for 

the latter given in section 6. In addition to these two structures 

there exists a third, described briefly in the Appendix? it is 

singular and corresponds to very special initial conditions. 

The specific configuration under study here was also examined, 

with similar methods, by Poland and Kassoy C63. Their analysis 

differs from ours in one crucial respect; they considered thr 

distinguished limit in which the spatially homogeneous induction 

time at the initial state and the conduction time across the vessrl 

are of the s a m e  order, i.e., the Frank-Kamanetskii number 6 is of 

order unity, albeit supercritical. In our analysis the induction 

time is comparable to the reoumtic time across the vessel, i.e., 6 

is very large. In physical terms, the explosive mixture being 
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considered here has a faster reaction rate. 

where 

Hare p, P ,  T, u and Y are, respectively, the  gas preesure, density, 

temperature, ve loc i ty  and reactant mass f ract ion.  The var iables 

have been m a d e  dimensionless w i t h  respect to a constant refPrrance 

s ta te  pol pa, To and Yo. Velocity is re fe r red  t o  the acoustic 

speed co, defined by 

t ime t o  to, the homogeneous induction t ime a t  the reference state, 

and length to cot0. The d i f fus ion terms have been left  out because 

they are much too small t o  play a role i n  the  problem under study. 
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The dimensionless parameters appearing above are the specific-heats 

ratio Y ,  the chemical heat release P and the activatlon energy 8. 

Let the reacting gas be confined to the interval 0 < x < a. At 

the walls the appropriate boundary conditions are 

(2.2) u(O,t) = u(a,t) = 0. 

The initial state of the gas is taken to be an O t 6 - l )  perturbation 

of the spatially homogeneous and stationary reference state, i.e., 

where the precise specification of ul ( x  ,O) and O1 ( x  ,O) must await 

the next section. Note that 

in accordance with the ga5 law (2.11~).  An asymptotic solution of the 

initial-boundary-value problem (2.1)-(2.3) is sought in the limit 

8 -3 m, with R and Y fixed and O ( l ) ,  until the localized explosion 

has reached completion. The various stages of evolution are 

detailed in the following sections. 

5.  Thm Induction 8trqo 

The initial conditions (2.3) suggest that, at least initially, 

the state of the gas remains an 0(8-1) perturbation of the 
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reference state. During this period, referred to as t h e  induction 

stage, one therefore seeks the expansions 

(3.1) u - e L1 + ..., 9 .* i + ~ i q i  + .--, 
fo r  H. = T, p, V and P 

which, upon substitution into the set (2.1) yield the leading-order 

disturbance equations 

Except for the nonlinear source term, rqns. (3.2a,b) are simply 

those of linearized acoustics in a uniform atmosphere. It is a 

simple matter to integrate them along the characteristics, as w a s  

done in 141 and C 5 1  for a different configuration. During 

induction it is enough to concentrate on the variables Ti, p1 and 

ul, because once they are known, the first eqn. in (3-2c) yields p1 

while the second, combined with (3.2b) and integrated, determines 

Y1 according t o  the expression 

Equations (3.2) need to be solved numerically, and this w a s  done 

for 
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Y = 1.4 

and f o r  a var iety of smooth i n i t i a l  condit ions and i n t e r v a l  lengths 

a. A high-resolution, adaptive ODE in tegrator  was employed t o  

in tegrate along the character ist ics.  A l l  computations displayed 

thermal runaway, characterized by the unboundedness of  T1 and p1 

somewhere i n  the i n t e r v a l  C0,al a t  a f i n i t e  time t,. The numerical 

r e s u l t s  can a l l  be summarized by considering two representative 

cases, f o r  which the i n i t i a l  values of pressure and mass f rac t i on  

correspond t o  those a t  the reference s ta te  and the i n i t i a l  ve loc i t y  

i s  zero, i.e., 

(3.3a) Pl(X.0) = Y1(x,0) = U l ( X , O )  = 0, 

while the i n i t i a l  temperature p r r t u r b a t i m s  are prescribed as 

(3.3b) Tl(x.0) = bCl-(x/a)I  f o r  case I ,  b C l - ( ~ / a ) ~ I  f o r  case 11. 

(Numerical resu l ts  t o  be presented below correrpond t o  a - 0.9, b = 

0 .5 . )  In both cases the i n i t i a l  disturbance ha5 I s ing le  maximum 

a t  x = 0, causing i t  t o  become the s i t e  of  thermal runaway. The 

essential difference between the  two cases i s  tha t  i n  I the 

temperature disturbance has a nonzero spat ia l  gradient (sharp peak) 

and i n  I1 a zero spat ia l  gradient (rounded peak), a t  x = 0. Thus I 

t y p i f i e s  a hot spot located a t  the boundary ( e . g . ,  the shock 

configuration discussed i n  C41 and [SI), and I1 an in te rna l  hot  

spot (eas i ly  v isual ized by a symmetric r e f l e c t i o n  about the 
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or ig in ) .  Henceforth the two cases w i l l  be re fer red to, 

respectively, as Type B (boundary) and Type I ( in te rna l )  . Their 

spa t ia l  structures, i t  turns out, are d i f ferent .  

I n  the fo l lowing sections the Type-E problem i s  discussed i n  

de ta i l .  The Type-I problem can be treated analogously and is, i n  

fact ,  s l i g h t l y  simpler t o  analyze; i t  was deemed su f f i c i en t ,  

therefore, t o  simply s ta te  i t s  solut ion i n  sect ion 6. 

W e  s t a r t  w i t h  Figure 2, w h i c h  d isplays the numerical r e s u l t s  f o r  

the Type-B induct ion solut ion. The? four graphs there exhib i t ,  

respect ively,  the p r o f i l e s  of TI, pl, u1 and P1 against x f o r  

increasing values of t, upto the t ime beyond which the in tegrat ion 

rou t ine  was unsuccessful f o r  a time step thus s igna l l ing  the 

imminence of  blowup. A n  examination of the T1- p r o f i l e  near blowup 

reveals the b i r t h  of  a boundary layer a t  x = 0. Addit ional 

information i s  provided by Figure 3, where the funct ion expt- 

T 1 ( O , t ) l  i s  graphed near blowup. The s t ra igh t - l ine  graph i n  the 

figurer has slope 1.4 (my), and a t - in tercept  equal t o  the blowup 

t ime t,, al lowing one t o  conclude tha t  

(3.4) Tl(O,t) -., - I n C Y ( t , - t ) l  + o ( l )  as t -+ t,. 

Figure 4 displays t ime p l o t s  of the so lut ion a t  x = 0, and shows 

c l e a r l y  tha t  whi le Tl(O,t) and p l ( O , t )  become unbounded, P l ( O , t )  

does not.  Therefore, pl(O,t) must have precisely the same leading- 

order behavior as Tl(O,t), i.e., 

(3.5) pl(O,t) -., -InCt,-tl + O ( 1 )  as t + t,. 
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T o  summarize, t h e  i n d u c t i o n  stage e x h i b i t s  t h e  classic l o g a r i t h m i c  

s i n g u l a r i t y  of s p a t i a l l y  homogeneous thermal  runaway C83. 

4. Typr-B Blowup Structurm 

Although numerics  h a s  e l u c i d a t e d  t h e  temporal  c h a r a c t e r  of t h e  

blowup s i n g u l a r i t y ,  f u r t h e r  a n a l y s i s  is needed t o  a s c e r t a i n  its 

s p a t i a l  s t r u c t u r e .  T h i s  w i l l  b e  done by examining s e p a r a t e l y  t h e  

boundary l a y e r ,  whose emergence h a s  a l r e a d y  been no ted ,  and t h e  

r e g i o n  outside. F i r s t ,  i t  is conven ien t  t o  i n t r o d u c e  a new t i m e  

v a r i a b l e  c v i a  t h e  e x p r e s s i o n  

(4.1) r = t,-t, c > 0. 

Then, fo l lowing  s i m p l e  man ipu la t ions ,  e0r.s. (3.2a,b) t r a n s f o r m  i n t o  

where t h e  dependent v a r i a b l e s  are now treated as f u n c t i o n s  of x and 

c.  The r e l e v a n t  boundary c o n d i t i o n  is t h e  f i r s t  of (2.21, re- 

w r i t t e n  as 

Elementary man ipu la t ions  on (4.2a,b) and (4.3) y i e l d  t h e  f o l l o w i n g  

i n t e g r a l ,  which w i l l  p rove  t o  be of v a l u e  later on: 



I 

I 

where 3 ( r )  denotes the disturbance temperature gradient a t  x = 0 ,  

and 3- i+s i n i t i a l  value, i.e., 
V 

t 

I 

I 

I 

! 

I 

(4.5) 
r -. 

Recall, from (3.3b), tha t  30 vanishes f o r  type I but i s  negative 

f o r  type B. Then ( 4 - 4 )  shows that  3(c) s 0 (rounded peak) f o r  the 

former and decreases monotonocally t o  -m (sharp peak approaching a 

cusp) f o r  the l a t t e r  as r + 0+. 

4.1 Tho Boundary Laymr 

Turning now t o  the asymptotic analysis near blowup, eqns. (4.2a,b) 

govern the  region outside the boundary layer, where the  outer l i m i t  

process 

x > 0 and f ixed, c + 0 

applies. The boundary layer, on the other hand, corresponds t o  the 

inner l i m i t  process 

s > 0 and fixed, r + 0 ,  

where s ( x , r )  is the spat ia l  coordinate i n  the boundary layer, 

r e f l e c t i n g  i t 5  se l f -s imi lar  structure. The shr inking nature o the 

layer requires x to vanish under the inner l i m i t i n g  process, and 
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then a moment ' I  r e f l e c t i o n  suggests the  d e f i n i t i o n  

I 

which assigns coequal importance t o  the  x- and r-derivatives, 

thereby providing the r i ches t  equations f o r  the  inner l i m i t .  (It 

w i l l  t ranspire tha t  th is scal ing does not qu i te  cover the  e n t i r e  

boundary layer, but more about tha t  la te r . )  These equations, 

obtained by transforming (4.2a,b) t o  the  ( s , r )  variables, are 

It i s  convenient t o  i s o l a t e  the temporal s ingu la r i t y  from the  

spat ia l  structure, by se t t ing  

where the  yet unknown constant B1 represents a weak in f luence of 

the  i n i t i a l  conditions on the  se l f -s imi lar  boundary layer, and w i l l  

be determined i n  due course by matching. The s t ruc tu re  functions 

f, g and h are assumed to be o(1 )  i n  the  l i m i t  r + 0. Subst i tu t ion 

of (4.8) i n t o  (4.7) y ie lds  the s t ruc tu re  equations 



The only boundary condition appropriate fo r  the above set is the 

wall condition 

(4.10) h(O,r) = 0. 

In addition, since the initial data are smooth, the structure 

functions and their s-derivatives are required to be regular in s. 

Consider the asymptotic expansions 

(4.11) @ .\. + u ~ ( c ) ~ ~ ( s )  + ... for 9 = f, g, and h, 

as r + 0. The gauge sequence Cu,(r )3  is not yet specified, but a 

clue as to its identity is provided by the integral relation (4.41, 

rewritten as 

in view of the scaling (4.6) and the prescription (4.8). For small 

f the f-expansion in (4.11) allows the above relation to be, reduced 

further to the asymptotic form 

where 
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(4.14) A = ( Y - l ) / Y .  

Recall, from (4.51, t ha t  the constant 3* i s  nonzero f o r  the Type-E 

problem. Then, the asisumption tha t  f l ' (0)  i s  nonvanishing 

( invo lv ing no loss  of  general i ty)  leads t o  the conclus~on 

i f  the two sides of (4.13) are t o  balance a t  leading order. W i t h  

u1 determined, i t  can be shown tha t  the  expansions (4.11) proceed 

i n  powers of r . h 

The boundary-Layer analysis can n o w  be carr ied out, and as 

hinted ear l ier ,  the layer i s i  found t o  have a two-sublayer 

structure. It i s  convenient t o  r e f e r  t o  Figure 5 i n  which the  

various spat ia l  regimes near and beyond blowup are displayed 

schematically. OR r e f e r s  t o  the outer region and BL t o  the 

boundary layer; the l a t t e r  i s  subdivided fu r ther  i n t o  an i n t e r i o r  

sublayer LI and an ex ter io r  sublayer LE- 

the i n t e r i o r  sublayer, show tha t  i t  becomes nonuniform fo r  large s, 

determine the appropriate scal ing and expansions f o r  the ex ter io r  

sublayer, and demonstrate tha t  the l a t t e r  merges smoothly i n t o  the 

outer region. Only one or two terms of the expansions i n  each 

region w i l l  be computed; continuation t o  higher orders i s  

straightforward though increasingly complex algebraical ly.  

We sha l l  f i r s t  examine 

4.1.1 Tho I n t o r i o r  Bublryor LI 

Substi tut ion of (4.11) i n t o  (4.9) y ie lds  the leading-order 
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structure equations for the inner sublayer, 

The boundary condi t ion 

comes from (4.101, and the solut ion i 5  r e s t r i c t e d  add i t iona l l y  by t h e  

requirement tha t  i t  be regular. I f  g1 and hl are eliminated from 

(4.16a-c), the r e s u l t  i s  the third-order equation 

f o r  fl- 

equation and the three l i n e a r l y  independent solut ions have the 

asymptotic behavior 

The points  sp0 and s=1 are s ingular points of  th is  

1, s and s B n s  as s + 0, and 

1, 1-s and ll-s13(y-1)/2y as J + 1. 

In general one can expect a one-parameter fami ly of regular 

solut ions t o  ex is t ,  and numerical computations v e r i f y  t ha t  such is 

indeed the case. A convenient parameter i s  



-16- 

(4.18) A1 f f l ( 0 ) .  

W i t h  f 1  known, hi' can be eliminated from (4.16a,b) t o  obtain a 

f i r s t -o rder  d i f f e r e n t i a l  equation f o r  g1 whose regular so lu t ion  

turns out t o  be 

and then, ( 4 . 1 6 ~ )  integrates t o  give 

where regu la r i t y  has been imposed again. Thus the f u l l  so lu t ion  at 

th is  order depends on the s ing le parameter A i .  Graphs of  fl, g1 

and hl f o r  A1 = 1 are drawn i n  Figure 6. 

A t  t h i s  stage the so lut ion (4.8) has the fo l lowing expansions 

i n  the i n t e r i o r  sublayer: 

I n  order t o  determine the spat ia l  extent o f  LI one needs the 

asymptotic behavior of  fl, g1 and hl for  la rge  s. 

obtained f r o m  (4.17) and (4.19), as 

T h i s  i s  eas i l y  



where 

(4.23) u = (Y-1)/(2Y-l) 

Here a, Ef and C+ are constants w i t h  values 

a = 2.660, B+ = -0.236, Cf = 0.0737 

obtained by in tegra t ing  the f equation (4.17) numerically. The 

remaining constants appearing above are given by 

The range of v a l i d i t y  of the expansions (4.20) can now be determined. 

For example, subs t i tu t ion  of (4.21a) i n t o  (4.20a) suggests tha t  the 

l a t t e r  becomes nonuniform when 
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and the  de f i n i t i on  (4.14) of A has been invoked. Correspondingly, 

Y / ( Z Y - l ) )  = o(l). x = O ( r  

The smallness of x ind icates tha t  although one has reached the edge 

of LI, the  outer region i s  s t i l l  too far .  The need f o r  an ex ter io r  

sublayer i s  therefore apparent. 

4.1.2 The E x t e r i o r  Sublayor 

I n  th is  sublayer the  appropriate var iables are and f, wi th  P 

defined by 

Y /  (2Y-1) (4.24) F = .u s = x/. 

The expressions (4.8) f o r  T1, pi and ul hold again, provided f, g 

and h are now treated as funct ions of F and r .  The s t ruc tu re  

equations, obtained from (4.9) by transforming from s t o  F, are? 

Matching requirements imposed by LI, obtained by subs t i tu t ing  

(4.21) i n t o  (4.20) and then employing (4.241, are 



Substitution into (4.25) leads to the differential equations 

I 

I 
I 

whose solutions, subject to the matching requirements (4.261, are 

Thus the LE-solution can be written as 
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O n e  m u s t  consider the behavior of th is  so lu t ion  f o r  large i n  

order t o  assess the spat ia l  extent o f  the  sublayer LE. T h i s  can be 

done, f o r  example, by subs t i tu t ing  the  large-$ behavior of  (4.28a) 

i n t o  (4.29a). The r e s u l t  i s  the expansion 

-Y/ (2Y-1) ) I which c lear ly  becomes disordered when B = O(r 

Correspondingly, x = 0(1), ind ica t ing  tha t  the  edge of  the boundary 

layer has now been reached. The next step i s  t o  sme i f  the 

boundary layer merges smoothly wi th the  region OR. 

4.2 Tho Outor Rogion OR 

I n  the outer  region, where x and r are the  proper variables, the 

so lu t ion  can be expanded as 

where the  leading terms are the numerically obtained l i m i t i n g  

values a t  blowup and the higher-order terms can be computed from 

(4.2a,b) under the outer l i m i t  process. It i s  a straightforward 

matter t o  establ ish tha t  a match of (4.30) w i t h  the LE-solution 

(4.29a-c) requires the fo l lowing asymptotic behavior of  the outer 

so lu t ion  a t  blowup: 



A c a r e f u l  examinat ion  of t h e  numer i ca l  s o l u t i o n  does, indeed ,  

I conf i rm t h i s  behavior .  

undetermined,  can  t h e n  b e  f o u n d  by comparing t h e  above  expans ions  

w i t h  t h e  numerical  s o l u t i o n .  The comparison is made a t  t h e  "edge" 

The c o n s t a n t s  A l  and E l ,  t h e  o n l y  o n e s  y e t  

of t h e  boundary l a y e r ,  %.e., f o r  Ix,t) s a t i s f y i n g  T << 1, r Y /  ( 2 Y - 1 )  

<< x << 1. I t  shou ld  be  emphasized t h a t  t h e  s t r u c t u r e  of t h e  

hll~wup s i n g u l a r i t y  is i n f l u e n c e d  by t h e  i n i t i a l  c o n d i t i o n s  o n l y  v i a  

t h e s e  c o n s t a n t s ;  o the rwise ,  the s o l u t i o n  h a s  a u n i v e r s a l ,  self- 

s i m i l a r  s t r u c t u r e .  

4.3 Summary 

T h e  near-blowup a n a l y s i s  is now comple te ,  and c a n  b e  summarized. 

I n  t h e  i n t e r i o r  s u b l a y w  LI t h e  expans ions  are 

1 where f l ,  g1 and h l  are d e f i n e d  by (4.17) and (4.19).  I n  t h e  

e x t e r i o r  s u b l a y e r ,  t h e  s o l u t i o n  is 
I 



-22- 

(4.33c) u .c e-1crU tnr H ~ ( s )  + P H ~ ( s )  + ... I + ..., 
where Fo, Ho and H1 are given by (4.28). 

expansions take the form 

I n  the outer region the 

where Tlo, plo and ulo are the terminal values of the induct ion 

solut ion, determined numerically. 

The remaining variables p and Y can be computed, upto 0 ( 8 - ' ) ,  by 

appealing t o  the f i r s t  equation of ( 3 . 2 ~ )  and (3.2d). The r e s u l t s  

are 

i n  LI, 

in LE, and 

I 



in OR. 

by 

(4.38) 
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The constant bi appearing in (4.35b) and (4.36b) is given 

bl = expCYb + Y4nY - (Y-1)BnB13. 

Observe that the BL-solutions (4.321, (4.33). (4.35) and (4.36) 

break down when -4nt L=: 0 ( 8 ) ,  signalling the end of the induction 

stage, and the onset of explosion. In contrast the OR-solutions, 

(4.34) and (4.371, suffer no disordering and in fact, become 

increasingly accurate as t + 0. 
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5. Tho Typm-8 Explowion S t r g o  

The nonuniformity just encountered decrees that further 

evolution in the boundary layer occur on the new time scale u, 

defined by 

(5.1) 

For u = O ( 1 )  the limit 8 + corresponds to a time interval of 

exponential brevity; its role in the evolution of thermal 

explosions was first recognized and exploited by Kassoy C81. The 

two sublayers comprising the boundary layer must again be examined 

in turn. In fact, we shall find that as the boundary layers 

continue to shrink, an expanding void, or an intermediate region 

(denoted by IR in Figure 51, is created between the sublayer LE and 

the outer region OR; this region begs a separate treatment. 

5.1 Tho In tor ior  Sublryor LI 

The spatial coordinate in this region remains s, now written as 

thereby expressing explicitly the continuous shrinkage of the 

region. In the ( s , u )  variables eqns. (2.1) transform into 



The boundary c o n d i t i o n  (2.2) is r e w r i t t e n  as 

A t  f i x e d  5 t h e  s o l u t i o n  must m a t c h  w i t h  t h e  i n d u c t i o n  zone  as u + 

0.  To o b t a i n  t h e  n e c e s s a r y  c o n d i t i o n s  o n e  a p p l i e s  t h e  "exp los ion  

l i m i t "  u f i x e d ,  8 + 8 t o  t h e  LZ-so lu t ion  (4.321, (4.35) and g e t s  
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where A was defined in (4.14) and bl in (4.38). These conditions 

reveal that spatial variations in the explosion stage appear only 

at the (exponentially small) O ( 6 )  level, thereby suggesting that 

the solution is spatially uniform to all algebraic orders in 8. In 

other words, the structure of the interior sublayer consists of an 

extremely weak chemico-acoustic field superimposed over a uniformly 

exploding atmosphere. Accordingly one seeks expansions of the form 

(5.7a) u * 6 U p , d  + . .., 
(5.7b) P .C 9o(u;8) + 6 $l(s,u) + ..., for 9 = T, p ,  p ,  and Y, 

with the understanding that the Bo contain all t w m s  of algebraic 

orders. Substitution into ( 5 . 2 )  finds the so satisfying the 
standard equations of constant-volume thermal explosion C81, i .e., 

The solution, subject to the matching conditione (5.51, is 

(5.9a) $o + 8-l ipol + ..., for ip = T, p 1  Y end P, 

where 
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The s t r u c t u r e  f u n c t i o n s  91 s a t i s f y ,  t o  l e a d i n g  o r d e r ,  t h e  e q u a t i o n s  

where Wu was d e f i n e d  i n  !5.8b). Replacement of To and W0 by t h e i r  

l ead inq -o rde r  v a l u e s  from ( 5 . 9 ) ,  fo l lowed  by t h e  u s e  of t h e  t r a n s -  

f o r m a t i o n s  

r e d u c e s  t h e  set (5.10) t o  

A A 

Eqns. (5.12a-c) are i d e n t i c a l  t o  (4.16a-c) if Tl, pl, ul and s i n  

t h e  former  are i d e n t i f i e d ,  r e s p e c t i v e l y ,  w i th  f l ,  gl, hl and s i n  

t h e  latter. Fol lowing the arguments of s e c t i o n  4.1.1, t h e r e f o r e ,  

one  is l e d  t o  t h e  s o l u t i o n  
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where cI1 is the constant introduced earlier in (4.18).  The 

amplitude function A1(u) is unknown at this stage, and will be 

determined by matching with the exterior sublayer. So far we only 

know its initial value as a result of matching with the induction 

solution (4.32), i.e., 

h 

It is now a simple matter to solve (5.12d) fo r  p l ,  and compute Y1 by 

integrating (5.12e) subject to the regularity requirement. The 

resulting expressions are 

Both the spatially uni+orm and the spatially-varying components 

of the expansions ( 5 . 7 )  are thus determined at leading orders, 

although the latter involve 61(u) which is still to be found. It 

is worth noting that the mpatial mtructuro of tho molution a m  

ommontirlly thm mamo a m  it warn at induction-mtrgo blowup( tho 

mcalingm (S.11) mirnply rofloct tho tonporrl mvolution of tho 

acoumt i e mpood 

A s  in section 4.1.1, the LI-solution breaks down *or large 5 ,  
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the nonuniformity now occuring (see the expansion (4.21)) at 

ess A(2Y-1)/Y = O(1). One is then led to the exterior sublayer. 

= e TL- C u & = r d n r  R&nhlayer L, 
-c I 8  6 # 1 1 1  L.m --. I -. --- - - 

Here the proper variables are F and u where d is now related to x 

and via the expressions 

and t.t w a s  defined in (4.23). In the new variables the full equations 

(2.1) read 

where W retains the definition (5.3). The solution is subject to 

the following matching conditions imposed by LI: 



from (5.14). I n  obtaining the condit ions (5.18) w e  have employed 

the expansions (4.21) and the so lut ion (5.13); the var iables w i t h  

double subscripts are the s p a t i a l l y  homogeneous funct ions appearing 

i n  ( 5 . 9 ) .  It turns out tha t  compliance w i t h  these condit ions a150 

ensures temporal matching w i t h  the induct ion stage. The LE- 

solut ion i s  now sought i n  the form 

Subst i tut ion i n t o  (5.17) shows tha t  (5.17a) is sa t i s f i ed  

i d e n t i c a l l y  to 0(6-1). A t  0(1 ) ,  (5.17b) reduces to 



whose solution subject to the matching requirement (5 .  lac) is 

At 0 ( K 1 ) ,  ( 5 . 1 7 e )  yields 

(5 -22)  

while ( 5 . 1 7 ~ )  reducer to 

and, in view of (5.221, simplifies further to 

Its solution, consistent with the matching condition (5 .  lea), is 

* 
With ?, known, (5.22) defines G l .  
consider ( 5 . 1 7 d )  at O(B-’); it yields 

In order to determine Y1 



When l i n e a r l y  combined with (5.23) the above equation leads t o  

acyl + PGll/af = 0.  

The matching condi t ion (5.18e) then provides the fol lowing expression 

f o r  Y1: 

.\. 

It now remains t o  determine u1, and the funct ion P(u)  (or, 

equivalently, h1 (IT) 1 .  

0 , reads 

Both are obtainable from (5.17b) which, a t  

.\. * 
With uo and p1 known (see (5.21), (5.22) and (5.2411, the 

general solut ion of the above equation can be wr i t ten  as 

* 
where K ( o )  i s  the in tegrat ion "constant". A s  f + 0, u1 has the 

asymptotic behavior 
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+ ~(2Y-l)/Y~3PlBnf + K] + ... , 

which must agree with the O(8-l) term in ( 5 . 1 8 ~ ) .  

+_=rm= yie;dc +_he di44erential quatian 

Hatching the llnS 

whose solution, subject to (S.19b), is . 

or, equivalently, 

With P determined, matching of the F-independent terms in (5.28) 

and (5 .18~)  yields K: 

where the constant Bh was defined in eqn. (4.22). The LE- 

solution at the explosion stage is thus complete. 

It is instructive to compare the solutions in the two sublayers. 

In each the background field is that of a spatially homogeneous 

thermal explosion, but the superimposed spatially-varying field is 

quite different, both in amplitude and structure. In LI the 

spatial component is exponentially small in amplitude but has a 

t 
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chemico-acoustic character; a1 1 disturbances t o  the  background 

homogeneous f i e l d  are of the same size. 

var ia t ions  in T, Y and p are 0(6-1), whi le those i n  u and P are 

exponentially small, i.e., the  evolut ion i s  essent ia l l y  due t o  

constant-volume chemical ampl i f i ca t ion  of  a spatially-non- 

uniform f i e ld ,  wi th gasdynamics playing a very minor role.  

I n  LE the  spat ia l  

A s  u increases, T and p increase and Y decreases, i n  both the 

sublayers. Eventually, p and T peak when YO0, the  leading term 

i n  Y, vanishes- This happens a t  (see (5.9)) 

and the  peak values are 

A t  the  same time, the O ( 8 - l )  t e r m  ( i n  T, say; see (5.20a1, (5.24) 

and ( 5 . 9 ~ )  ) develops a logarithmic s ingu la r i t y ,  ind ica t ing  

breakdown of the so lu t ion  and the end of the  explosion stags?. 

5.3 Tho Outor Roqion OR 

T h i s  region remains essent ia l l y  stat ionary, and hence plays no 

r o l e  dur ing the explosion stage. F w  the sake of completeness, we 

give below the asymptotic f o r m  of the outer so lu t ion  as x + 0; 

these expressions are determined by combining (4.31) and (4.34): 



Similar  e x p r e s s i o n s  c a n  be w r i t t e n  f o r  p and Y. The i m p o r t a n t  

p o i n t  t o  n o t e  is t h a t  t h i s  s o l u t i o n  is unmrtchable  w i t h  t h a t  i n  LE; 

f o r  example, to l e a d i n g  o r d e r ,  T is 1 i n  OR and l / ( l - u )  i n  LE. The 

r e a s o n  is t h e  emergence of t h e  i n t e r m e d i a t e  r e g i o n  I R  i n  F i g u r e  5, 

c r e a t e d  by t h e  r e c e d i n g  boundary layer - .  In  t h i s  r eg ion  T must 

va ry ,  a t  l e a d i n g  o r d e r ,  from t h e  o u t e r  v a l u e  1 t o  t h e  i n n e r  v a l u e  

i / ( i - u j .  

5.4 Tho I n t m r m o d i a t m  R m g i o n  I R  

T h i s  r e g i o n ,  because  of its p a s s i v e  c h a r a c t e r ,  w i l l  o n l y  b e  

d e s c r i b e d  v e r y  b r i e f l y .  I t  is governed by t h e  v a r i a b l e s  u and X ,  

where X is d e f i n e d  by 

(5.33) - 8 X  x = e  . 

Matching wi th  t h e  n e i g h b o r i n g  r e g i o n s  is c a r r i e d  out a t  f i x e d  Q, by 

s e t t i n g  

x = -e-1 finx 

as  one  approaches  t h e  o u t e r  r eg ion ,  and 

x = c ( 1 - U )  - e-1 InF , 
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as the boundary layer i s  approached. Therefore the range of  X i s  

(5.34) 0 < x < u(1-u); 

r e c a l l  t ha t  u wa5 defined i n  (4.23). F r o m  (5.20) one can eas i l y  

conclude t h a t  leading-order matching w i t h  LE requires 

w i t h  analogous expressions for p and Y, whi le 

Therefore the so lu t ion  i s  sought i n  the  form 

(5.36a) a * + ..., f o r  i = T, p, p and Y, 

and 

-BX(Y-l)/Y "0 + . (5.36b) u + e  

I n  the ( X , u )  variables the  f u l l  equations (2.1) read 
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where W re ta ins  the d e f i n i t i o n  (5.3). Clearly, the so lut ion i s  

stat ionary, i.e., lndepenoent of w to aii aiycc'uriiiils. =-deism 

Speci f ica l ly ,  the react ion term W i s  exponential ly small since one 

expects T < l/(l-u). The leading-order terms can then be 

determined simply by appealing t o  the matching condit ions (5.351, 

and one f inds  tha t  

w i t h  analogous expressions f o r  p and Y, whi le 

It i s  a simple matter t o  check tha t  the above so lut ion also matches 

w i t h  the outer expansions (5.32) as X * 0.  

The analysis of the Type-B explosion is thus complete. 

6. Thm Typm-I Enplomion 

I n  t h i s  section de ta i l s  are la rge ly  omitted and emphasis i s  on 

the resul ts ,  since the treatment fo l lows closely the Typr-E 

analysis j u s t  concluded. 

6.1 Thm Induction Btrgm 

Figures 7(a-d) display the numerical so lu t ion of the induct ion 

problem. The graphs are self-explanatory. S i m i l a r i t y  w i t h  Figures 
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2(a-d) i s  obvious, but two points of contrast are noteworthy. 

F i r s t ,  the temperature p r o f i l e  now has a rounded peak. Second, the 

boundary layer is th icker;  t h i s  can be seen more c lea r l y  i n  Figure 8, 

where T l ( x , t ) / T l ( O , t )  i s  p lo t ted  a t  the l a s t  successful t ime step 

f o r  each of the two cases. 

The boundary layer re ta ins  the form (4.8) and a two-sublayer 

s t ructure emerges once again. The expansions are 

i n  LI, and 

i n  LE. The coef f ic ients  A l ,  A2 and B1 are t o  be determined by 

matching with the outer solut ion a5 before. The spat ia l  coordinate 

J i n  LE i s  defined by 

1 /2 (6.3) J = x / r  , 
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boundary layer i e  now O ( C ” ~ )  th ick ,  and hence implying tha t  the 

th icker  than the O ( r  Y/(2y-1))  Type-B layer. 

8 is thus confirmed. 

The f i nd ing  of Figure 

It turns out +urtner inat  tire LE-soiution is u n i i u r i i i i y  vuiid sii 

the way t o  5 = 0, so tha t  the i n t e r i o r  sublayer is ,  i n  fact ,  

superf 1 uous . 
For smooth merging w i t h  the boundary layer the outer, 

numerically computed so lut ion is required t o  have the asymptotic 

form 

This behavior was confirmed, and the constants Al, c12 and El 

computed, by comparing the numerical so lu t ion  w i t h  the above 

expansions. The remaining variables P1 and Y 1  can be determined 

as be-fore, by appealing to tire + i r s t  member of (3.2~1, and 

(3.2d). 

6.2 Thr Explomion 8t.g. 

The analysis proceeds as i n  section 5.2. The appropriate 

coordinates are v and 5 ,  and the requirement of matchinq w i t h  Lf 

i s  replaced by the condit ion of r e g u l a r i t y  a t  5 - 0. The so lut ion 

turns out t o  be 
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where the constant bl appearing in (6.5e) was defined in (4.38). 

The doubly subscripted quantities correspond to the spatially 

homogeneous explosion, and were introduced in ( 5 . 9 ) .  The explosion 

I stage peaks just as it did for Type-E, and the remarks at the end 

I of section 5.2 remain valid. Finally, the IR-analysis of section 

5.4 carries over,  with obvious modifications. 

I 

I 

i 
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7. Concluding Rmmrrkm 

The spat ia l  structure? and temporal evolut ion of a loca l i zed  

thermal explosion i n  a confined gas have been described 

l l l ~ ~ i ~ = ~ ~ ~ t i ~ ~ ~ ~ ~ .  L~=~li==ti=n, r=f.,h=r =na+{al -r--- -- ly cirri F a r m  

explosion, occurs as a r e s u l t  of system nonhomogeneities, here 

modelled by a s l i g h t l y  nonuniform i n i t i a l  temperature. f i t tant ion 

i 5  confined t o  what may be cal led the  fast-reaction l i m i t ,  

characterized by the i n i t i a l  induction time of the react ion being 

comparable t o  the i n i t i a l  aceustic t ime across the vessel, so t ha t  

d i f f u s i o n  plays no role.  This l i m i t  can be achieved i f  the i n i t i a l  

temperature of the unreacted gas has been raised t o  a s u f f i c i e n t l y  

high leve l ,  perhaps by the passage of a strong shock. By contrast, 

the slow-reaction l i m i t  would correspond t o  the induct ion time and 

the conduction time being of the same order. The l a t t e r  problem 

was the  subject of Poland and Kassoy's invest igat ion C63. 

The explosion i s  shown t o  develop i n  two d i s t i n c t  stages. The 

f i r s t  stage i s  induction, characterized by small perturbations 

about a s p a t i a l l y  uniform state, where the primary in te rac t ion  i s  

between l inear ized acoustics and w e a k  hut nonlinear chemical 

heating. Chemical ampl i f icat ion leads t o  loca l ized thermal 

runaway, or blowup of the perturbations, a t  a time and locat ion 

determined by the i n i t i a l  and boundary conditions. The spat ia l  

s t ructure a t  blowup i s  self-similar, d i f f e r i n g  s l i g h t l y  depending 

upon whether the runaway s i t e  is a t  the boundary or i n  the  i n t e r i o r  

of the domain. 

Induction i s  followed by explosion, characterized by O ( 1 )  
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variations in the state of the gas. The characteristic chemical 

time plunges dramatically. The! acoustic time drops as well, but 

not nearly in the same proportion, so that explosion is dominated 

by chemical heating. There is no time for  expansion, with the 

result that changes in the velocity and density fields are 

negligible. Thus the gas explodes locally at essentially constant- 

volume conditions, with little change in the mpatial structure that 

it inherited at runaway. (Analysis in the Appendix shows that if 

thermal expansion is admitted, the corresponding spatial structure 

is necessarily singular.) The explosion stage ends when temperature 

and pressure within the explosion have peaked, the final values 

being exactly the same, to leading order, as in the spatially 

homogeneous case. The subsequent expansion of the hot, highly 

compressed gas, and the eventual development of a blast wave, are 

currently under study. 
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Appmdix 

The setup (4.81, employed i n  the t e x t  f o r  analyzing tho spat ia l  

s t ructure of blowup, i s  based on the numerical observation tha t  

both T i  and p1 exh ib i t  ident ical ,  -4nt  behavior as t + w. 

This observation, found t o  hold f o r  a l l  the numerical runs 

undertaken, impl ies tha t  blowup i s  a constant-volume process, since 

density perturbat ion p1 = p1 - T1 remains bounded. 

Let us now consider the p o s s i b i l i t y  t ha t  f o r  some i n i t i a l  

conditions, blowup l i e s  partway between a constant-volume and a 

constant-pressure process, and ask whether a se l f -s imi lar  s t ructure 

consistent wi th th is  notion exists. Acctrdinqly,  w e  ;.=place !4.9! 

by 

where 

O <  A <  1. 

The case A = 0 corresponds t o  a constant-pressure s i tuat ion,  and 

A = 1 t o  the constant-volume case already discussed. Subst i tut ion 

i n t o  (4.71, followed by some rearrangement, y ie lds the leadinq- 

order structure equations 
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The transformation 

(a. 3) fo  = -BnF 

reduces ( A . 2 a )  to the linear equation 

(a. 4 )  s ( l - ! s 2 ) F '  - C 1 - s 2 - C ( Y - 1 ) / Y 3 h l F  = 1 - y ~  2 . 

Once F is known, fO,  go and ho can be computed sequentially from 

(c1.3) and (CS.2b.c). 

Equation ( A . 4 )  has singular points at s = 0 and 1. It can be 

shown that in general integration can remove at most one 

singularity, thereby yielding solutions which are singular 

either at 0 o r  at 1. Such solutions can evolve only f r o m  very 

special, singular initial conditions, and are therefore 

unacceptable if the initial data are smooth. The only regular 

solution is the constant 

F = Y ,  

which requires 

A =  1, 

corresponding to the constant-volume blowup already discussed. 
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Figure 1 

A scematic of the temperature profiles fo r  the Type-B (sharp 

peaked) and the Type-I (round-peaked) explosion. 
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Figure 2 ( a )  

Type-B  induction-stage profiles for (a) TI, (b) pl, (c) u1 and 

(d) pl .  The profiles are plotted at ti) t=O, (ii) t=0.2, 

( i i i )  t=0.4, (iv) t=0.43, ( V I  t4.442, (vi) t-0.44625. Estimate 

of blowup time is t, = 0.446890. 
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Figure 2 ( b )  
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F i g u r e  2 ( d )  
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F i g u r e  3 

P l o t  of expC-T1 (0,t) 3 fo r  Type-B problem. 
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Figure  4 

Type-E p l o t s  of T l ( O , t ) ,  p l ( O , t )  and P l ( O , t ) -  
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€EXPLOSION 1W 

Figure 5 

fi schematic of  the spatial zones at and beyond blowup. 

BL: Boundary Layer, LI: Interior Sublayer, LE: Exterior Sublayer, 

OR: Outer Region, IR: Intermediate Region. Not to scale (The t- 

scale is cosiderably stretched). 
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Figure 6 

Profiles of structure f u n c t i o n s  f l ,  g1 and hl f o r  f l(0) = 1. 
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F i g u r e  7(a )  

Type-I induction-stage profiles f o r  (a) T I T  (b)  pl, ( c )  u1  and 

( d )  p l .  The profiles are plotted at (1) t=O, (11) t=0-29 

(iii) t=0.4, ( i v )  t=0.422, ( v )  t=0.432, (vl) t=0.435875. 

Estimate of blowup time is t, = 0.435880. 
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Figure 7 ( b )  
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b 

a 

P l o t s  of TI ( x , t ) / T 1  ( O , t )  a t  t h e  last i n t e g r a t i o n  s t e p  for 

(a) Type B, and (b)  T y p e  I .  
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